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Abstract—Replacement of 2,2%-bithiophene by BEDOT in push–pull NLO-phores produces a red shift of the absorption maximum
accompanied with a large increase of the quadratic nonlinear optical susceptibility. © 2001 Elsevier Science Ltd. All rights
reserved.

Push–pull chromophores for 2nd order nonlinear optics
involve electron-donor and -acceptor groups interacting
through a p-conjugating spacer.1 Whereas the optimiza-
tion of the donor2 and acceptor3 groups has led to
considerable progress in the development of stable and
efficient systems, the relationships between the structure
of the spacer and 2nd order hyperpolarizability seem to
have attracted less attention. Polyenic spacers allow
high nonlinearities to be reached as they provide the
most effective way to achieve charge redistribution
between the donor and the acceptor.4 As shown in
recent work, thiophene-based spacers can lead to stable
NLO-phores with large second order nonlinearities.2,3,5–

8 These high performances can be related to the moder-
ate aromatic resonance energy of thiophene which
allows a better p-electron delocalization than e.g. ben-
zene-containing spacers.

Thus, NLO-phores built around thiophene-based con-
jugating spacers such as thiophene and its
oligomers,2,3,6 fused ring systems,7 and oligo-
thienylenevinylenes,5,8 have been synthesized. Recently,
we have shown that the covalent bridging of a
dithienylethylene (DTE) spacer leads to a considerable
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Scheme 1. Reagents and conditions : (i) POCl3/DMF; (ii) t-BuOK/MeCN–THF; (iii) 1c, 2c bis(dicyanomethylidene)indane, Ac2O,
reflux 1 h and 1.5 h. 2a malononitrile, CHCl3, reflux 18 h. 2b diethylthiobarbituric acid, Ac2O, 80°C, 24 h.

enhancement of the molecular 2nd order hyperpolariz-
ability of the derived push–pull NLO-phores.8 We now
report new NLO-phores (2a–c) in which BEDOT is
used as p-conjugating spacer.

The synthesis of the NLO-phores is depicted in Scheme
1. Vilsmeier formylation of 2,2%-bithiophene (BT) (1),
and BEDOT (2),9 gave aldehydes 1f and 2f in 94 and
80% yields, respectively. Wittig olefination of 1f and 2f
with a phosphonium iodide bearing the N,N-dimethyl-
aniline group led to compounds 1e and 2e as a mixture
of E and Z isomers (�7/3) (yields 93 and 73%). After
separation of the Z isomer, a second Vilsmeier formyla-
tion gave aldehydes 1d and 2d in 60 and 66% yields and
the target compounds 1c, 2a–c were obtained in 60–
90% yield by Knoevenagel condensation of 1d and 2d
with malononitrile, diethylthiobarbituric acid and 1,3-
bis(dicyanomethylidene)indane.10

Table 1 lists the UV–vis absorption maxima (lmax),
second order nonlinear hyperpolarizabilities (mb), and
decomposition temperatures (Td) of the new BEDOT
based NLO-phores and of compound 1c synthesized as
reference compound.

As expected, the increase of the acceptor strength
induces a bathochromic shift of the lmax accompanied
by an increase of mb. Comparison of the data for
compound 2a to those of other systems having the same
donor/acceptor pair but a different spacer, shows that
the BEDOT spacer leads to an efficiency comparable to
that of DTE5 but inferior to that of bridged DTE8 or

dithienothiophene.7b On the other hand, comparing the
data for compounds 1c and 2c which bear the same
acceptor group clearly shows that replacement of BT by
BEDOT produces a 118 nm bathochromic shift of lmax

and more than a twofold increase of mb, up to 11600×
10−48 esu. However, this high mb value may be, in part,
related to resonance effect.

While these results suggest that BEDOT is a more
effective electron relay than BT, the evaluation of the
relative contribution of electronic11 and geometric
effects on the enhancement of mb is not straightfor-
ward. Whereas theoretical work in progress should
contribute to clarify the role of electronic factors, fur-
ther insights on the effects of the ethylenedioxy group

Table 1. Absorption maxima,a quadratic hyperpolari-
zabilitiesb and decomposition temperaturesc of chromo-
phores 1–2

mb (10−48 esu)blmax (nm)aCompd Td (°C)c

2155000 (1900)7121c
2a 3082120 (1200)588

6492b 2000 (950) 300
830 20611600 (2400)2c

a In CH2Cl2.
b Measured in CHCl3 at 1.9 mm by the electric field-induced second

harmonic generation (EFISH) technique, values in parentheses rep-
resent the zero-frequency hyperpolarizability product mb0.

c Determined by differential scanning calorimetry at a rate of 10°C/
min.
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Figure 1. ORTEP view of BEDOT (H atoms omitted).
Selected bond lengths: S(1)�C(1) 1.732(2); S(1)�C(4) 1.715(3);
O(1)�C(2) 1.368(3); O(1)�C(5) 1.435(3); O(2)�C(3) 1.374(3);
O(2)�C(6) 1.450(4); C(1)�C(2) 1.373(3); C(2)�C(3) 1.421(3);
C(3)�C(4) 1.347(4); C(5)�C(6) 1.483(4).
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p-conjugating spacer allows stable NLO-phores with
enhanced quadratic hyperpolarizability to be devel-
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Covalent fixation of these chromophores into high Tg
polyimides is in progress and the resulting materials will
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1062 reflections). All calculations were performed using
the MolEN package.
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